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ABSTRACT. The generalization of well known Szész-Mirakjan operators
was introduction by G C Jain, Approzimation of functions by a new
class of linear operators, Journal of the Australian Mathematical Society,
13(3):271-276, 1972. In P Patel and V N Mishra, Jain-Baskakov op-
erators and its different generalization, Acta Mathematica Vietnamica,
40:715-733, 2015 introduced the integral modification of Jain operators
and discussed its different generalization. In this manuscript, we extend
the study of the operators introduced by Patel & Mishra and discussed
some direct results in ordinary approximation for this operators.
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1. INTRODUCTION

Using the generalized poisson distribution the following positive linear
operators was introduced by Jain [5]: for f € C ([0, o0)); 8 € [0,1)

(1)

where

(2) wg(k,nz) = nx (nx + kB)

K0 = st (%),
k=0

(nz—+kp)

k!
18]

k—1€

; for k=0,1,2,...;2 € [0,00).

In the particular case 8 = 0, J;°, n € N, turn into classical Szdsz-
Mirakjan operators [6, 12]. We mention that, a Kantorovich-type extension
of these sequence of operators was discussed by Umar and Razi [14]. Very
recently, integral modification of these operators having a weight function of
some Beta basis functions was introduced in [8, 13]. The Voronosvkaja-type
asymptotic formula of the operators (1) was presented by Farcag [2], the
modification of these asymptotic formula was discussed in [1].
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Furthermore, the integral modification of these operators having a weight
function of some Baskakov basis function defined for f € C ([0, 0)) as
o0 0
®) KAL) = 01 Y wsbons) [ pr (0Ot +e5(0)
k=1

where
n+k-1 tk
Pnk(t) = ( i )W
and w(k,nx) as defined in (2). The above integral operators and its dif-
ferent generalizations were discussed by Patel and Mishra [9]. In the same
paper both the authors also introduced the following generalization of the
operators KL’B] with parameter ¢ > 0 as:

> wslheno) [ pusr 050+ e 5(0),
k=1 70

(n—¢

@) KPUfe) =

C

where . .

Pnj—1,(t) = CF(C - n ) —

PRL(E) (14 et) s

As a special case, i.e., ¢ = 1, the operators (4) reduce to the Jain-Baskakov
operators defined by (3). These operators have different approximation
properties than the operators (3). For the particular case ¢ = 1 and 3 =
0, the modified Jain-Baskakov operators (4) equal to the classical Szdsz-
Mirakjan-Baskakov operators discussed in [11, 3]. Some researchers con-
tributed in the direction of generalizing the operators with parameter ¢ > 0
can be found in [8, 10, 4, 7]. In the next section, we prove a weighted Ko-
rovkin theorem by obtaining rate of approximation in terms of modulus of
continuity. In section 3, we give a Voronovskaya type asymptotic formula.
For the convergence of these operators, the condition 8 — 0 is needed. Thus
throughout this paper, we take 8 := 8, = 1 (n € N) and C([0, 00)) denote
by the set of continuous functions on interval [0, co).

1
Lemma 1.1. [5, 2] For the first few moments of the operators JL”](f,Lr),
we have

(1) S =1,

(2] _nx
(2) Jn (tvx)_n_:lv? ,
(2 y_ () n-x
(3) Jn (t ,I) - (n _ 1)2 (TZ _ 1)37
(nx)? 3n3x? x(n? 4 2n?)

@) W2 = L et 1

(nx)* 6niz®  22(Tn* +8n%) x (n'+8n® + 6n?)

) D) = S G o T

1
Lemma 1.2. For the moments of the operators KJfC](f, x), we have

(1o oy 1.
(1) ch‘(la”«) =1

4] §
(2) Kple(t,z) =

n-x

m, fOT n > 20,
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2], 9 n2 (1-2n+2n?)x na?
K n ) = ‘
(3) n,c (t ,-1) (’I’L — 20)(n — 30) (n — 1)3 + (n — 1)2 s for
n > 3c;
(4) K[%](t?’ z) = n? ntx3 N 3n2z? (1 — 2n + 2n?)
e (n—2c)(n —3c)(n—4c) | (n—1)3 (n—1)4
2 — 8n + 1502 — 1203 + 6n*
;r( n+ 15n n3 + 6nt) forn > des
(n—1)
(5) K[%](t‘l ) = n? nbazt N 6nt (1 —2n+ 2n2) z3
BT (= 2¢)(n — 3¢)(n — 4e)(n — 5¢) | (n— 1) (n—1)>5
n? (11 — 44n + 84n? — 72n® + 36n*) 22
(n—1)°
(6 — 36n + 101n? — 152n3 + 144n* — 72n° + 24n°)
+ CESIK , forn > 5c.

The proof follows from Lemma 1.1 and the linearity of the operator.

1
Lemma 1.3. For the central moments of the operators KT[Lf‘C](f, x), we have
G n? .
(1) Kpe(t —z,z) = {(n (n =20 1}15,
1 6c® — (5 + 12¢)n + (1 +4c + 6¢%) n? + cn3) 22
@) K (t-ap,z) = Lo cOF L2 | LA Ly
(n—1)2(n — 3c)(n — 2¢)
(n2 —2n3 + 2n4) T
(n—1)3(n — 3c)(n — 2¢)
1 —24¢ + 2¢%(13 + 36¢)n — 3¢ (3 + 14c + 24¢?) n?
(3) KW (t—a)?, ) = o | ZHACH 208 4 86cn —3e (34 Mot 24 n
’ (n—1)3(n — 4c)(n — 3¢)(n — 2c¢)
(14 6¢+ 6c® 4 24¢®) n® + c(3 + 1OC)n4} 3n%(4e(n — 1) +n)(1 — 2n + 2n?)a?

, forn > 3¢;

(n —1)3(n — 4c¢)(n — 3¢)(n — 2¢) (n — 1)4(n — 4¢)(n — 3¢)(n — 2c¢)
n?(2 — 8n + 15n% — 12n3 + 6nt)x
(n—1)5(n — 4c)(n — 30)(471—22) \ -
(4] B 120¢* — 2¢°(77 + 240¢)n + ¢*(71 + 376¢ + 720¢”)n
(4) Koie (=)', 2) = ot (= 20)(n = 30)(n — do)(n - 5e)(n— 1)°
—2¢(7 4 48¢ + 102¢* + 240¢%)n3 + (1 4 8¢ — 18¢? — 104c¢3 + 120¢* )n?
i (n —2¢)(n — 3¢)(n — 4e)(n — 5¢)(n — 1)4
2¢(3 + 20c + 43¢%)n® + 3c2nS
(n —2¢)(n — 3c)(n — 4¢)(n — 5¢)(n — 1)4}
6n%z3(1 — 2n + 2n?)(20c? — ¢(9 + 40¢)n + (1 + 8¢ + 20c?)n? + cn?)
+ (n—20)(n—30)(n —4c)(n —5)(n — 1)
2 { —40c + 8(1 + 25¢)n — (29 + 460c)n? + 12(4 + 45¢)n?
(n —2¢)(n — 3c¢)(n — 4¢)(n — 5¢)(n — 1)6
N —24(1 + 15¢)n* + 120en® + 12n° }
(n —2¢)(n — 3c¢)(n — 4c)(n — 5¢)(n — 1)8
n2x(6 — 36n + 101n? — 152n3 + 144n* — 72n° + 24n5)
(n —2¢)(n — 3c)(n — 4c)(n — 5e)(n — 1)7 ’
forn > b5c.

, for n > 4c;
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The proof follows from Lemma 1.2 and the linearity of the operator.

2. RATE OF CONVERGENCE

Let B2 ([0,00)) = {f : [0,00) = R : | f(z)| < Ky(1+ z?), for all z € [0,00)},
where K is a positive constant depending only on f. Let C,2 ([0,00)) =
B2 ([0,00))NC ([0, 00)). In this section, we establish the rate of convergence
in the space

% (0,00)) = { f€Cun((0.00)) ¢ lim lfgl is ﬁnitc}. The space % ([0, 00))
g o : _ o @)
is norm linear space with norm ||f||,2 = sup

z€[0,00) 1422
Let A > 0. The usual modulus of continuity of f on the closed interval [0, A]
is defined by
wa(f,8) = sup{|f(z) = f()] : [x — 1] < 6, =, t € [0, A}
It is well known that, for function f € C7» ([0, 00)), }irr(l]wA(f, d) = 0. The
—>
1
next theorem gives the rate of convergence of the operators KT[I"C}( fy) to f,
for all f € C%, ([0,00)):

Theorem 2.1. Let f € C%, ([0,00)) and let way1(f,9), (A > 0) be its mod-
ulus of continuity on the finite interval [0, A+ 1] C [0,00). Then,

6) KR~ Flogoay < Np(l+ A)62 + 20451/, 80),
1
where s, — 6¢% — (5 + 12¢)n + (1 + 4c + 6¢?) n? + cn® A2y n? —2n3 + 2nt " 2
(n—1)2(n — 3c)(n — 2¢) (n—1)3(n —3c)(n — 2¢)

and Ny is a positive constant depending on f.

Proof. Let « € [0, A] and ¢t < A+ 1. It is clear that
t—x .
© 10 - S S wan (-2 < (1+ 5 w0

where 6 > 0. On the other hand, for « € [0, A] and t > A+ 1, using the fact
that t —z > 1, we have

(7)

If(t)—f(x)] < Kf (1+2° +t%) < Ky (2+ 32 +2(t — 2)%) < Np(1+4%)(t—2)?,
where Ny = 6Ky. From inequalities (6) and (7), we get for all « € [0, A]
and t > 0 that

16~ @) < N1+ 4=+ (14 15 wna 0,

1
and therefore by linear properties of the operators K}[,"]

,C

, we obtain
1 1 1 1
Ko (£.2)—f (@) < Ny(1+A) K (¢, :c>+(1 + 3= ala) Jona (7.0,

By Cauchy-Schwarz inequality, we have

1 L 7 ’
K (f,2)— f(2)] < Nf(1+A2)KL,Ec]((t_a’)2vx)+<1 + % [Kr[fc]((t B x)2,x):| ) wanlf0)
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Using Lemma 1.3 and then taking supremum over the interval [0, A] on both
sides of the inequality (5) is archive. Hence, the proof is completed. O

1
Corollary 2.2. Forall f € C, ([0,00)), the sequence of operators {KL?C}(f, )}
converges uniformly to f on [0, A] (A > 0).

3. A VORONOVSKAYA-TYPE ASYMPTOTIC FORMULA
In this section, we prove a Voronovskaya-type asymptotic formula for the

1

operators Kr[fc] given by (4). We first need the following lemma.

1
Lemma 3.1. lim n2Kr[L7(;]((t—x)4, x) = 322 (24cx)?, uniformly with respect
n—oo
to x € [0, A] with A > 0.
Proof. The proof follows from Lemma 1.3. O

Theorem 3.2. For every f € C%, ([0,00)) such that f', f" € C%, ([0,00)),

lim (Ki?!(f, z) - f(fv)> = 2(1+20)f/(2) + 52 + c2) f'(a)

n—oo
uniformly for all xz € [0, A].
Proof. We note that f, f' and f” are in C%, ([0,00)). Define

fO=f@)~(t-0)f (@)=L (t-)*" @)
Q(t,x):{ : ift#a

(t—x)?

0, ift =ux.
One can notice that, Q(f,) = 0 and Q(f,z) € C, ([0,00)). By Taylor’s
theorem

(t —x)?

f&)=fl@)+t-2)f'(x)+ (@) + (t = 2)°Q(f, 2).

2!
1
Applying the operators K,ETJ both sides of the above equality, we obtain
1 1 " 1
o (K0 - 1) = @R - ) e DD - o0)
1
®) FnES (- 2)2Q(t @), ).

By the Cauchy-Schwarz inequality, we get for the second term on the right-
hand side of (8) that

9)
n| KRt — )20t ), 2)| < (#Klﬁj((t ~ ) :v)) : <KL?1£(Q2(t, 2), :c))

Now, observe that Q(z,z) = 0 and Q(-,2) € C}, ([0,00)). Therefore it
follows from Corollary 2.2 that

1
2

: (3] 2 _ 02 _
711320 Ky (Q4(t,x),z) = Q°(z,z) =0
uniformly for all z € [0, A], (A > 0). Now, by Lemma 3.1, we see that

(10) lim nKY (¢ — 2)20(t, 2),2) = 0.

n—oo
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On the other hand, from Lemma 1.3, one can observe that

1
(11) JLH;OnKL"C]((t—x),x) =z(1+ 2¢)
and

1
(12) nh_)rr;o nKL:’_(]((t —2)% ) = (2 + cx)

uniformly for all z € [0, A]. Then taking the limit as n — oo in (8) and
using (9), (10), (11) and (12), we have

i n (K70 - 7(@)) = (1420 (@) + 52+ e0)f (o),

n—oo
uniformly for all x € [0, A]. Hence, the proof is completed. O

1
Remark: In particular, if ¢ = 0, then the operators Ky[g"j( fs+), reduce to

the Jain-Baskakov operators recently introduced in [9]. We obtain the follow-
ing conclusion of the above asymptotic formula for the Jain-Baskakov opera-
tor in the ordinary approximation as follows: for f, f" and f” € C%, ([0, 00)),

lim n <K§O](f,x) — f(x)> =z (f'(z)+ f"(x))

n—oo

uniformly for all z € [0, A] (A > 0).
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